If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81-72x+12x^2=0
a = 12; b = -72; c = +81;
Δ = b2-4ac
Δ = -722-4·12·81
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-36}{2*12}=\frac{36}{24} =1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+36}{2*12}=\frac{108}{24} =4+1/2 $
| 4(-x-16)=-4x+6.4 | | 7x+12=3x+9+2x+15 | | 4x+7+x+23=180 | | 2(x-10)=3x-x+2 | | 300=2*150+2w | | 130+8x-6=180 | | 17x-3-17x+8=175 | | 12-f=58 | | 10m^2-5m-4=-4m+11 | | 3)-38+6x=-2(1-6x) | | x=5/9x-32 | | 10x+6=-44 | | 3b^2+2b+10=-9b^2 | | 17x-8-17x+8=175 | | 15(-46+40)=15(-8x+244) | | 2x^2+2x+7=2 | | 130+15x+5=180 | | -2.1=p+(-9.3 | | 15/4=7x/3 | | 18-s=5 | | 2x^2+2x+2x+7=2 | | (m-1)(m-3)=0 | | 2x+-6=26 | | 2(x+3)=-2x+3 | | b-2.8=0.8+4 | | 5x-35=2x+58 | | 15-x=-54 | | 2(4k-2)-2k=6k-2 | | 2x+6=-6+3 | | 2(4k-2)-2k=6k-4 | | 11k^2-15=11k | | 3x+16+4x-15+2x+8=180 |